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1. Introduction

The hadronization of partons into hadrons, for the time being, cannot be calculated from

first principles, but it is usually described in terms of phenomenological models, such as the

Kartvelishvili [1] or Peterson [2] non-perturbative fragmentation functions, containing few

parameters which need to be tuned to experimental data. It was recently proposed [3, 4],

however, a non-perturbative model, based on the work in refs. [5, 6], including power

corrections via an effective strong coupling constant, which does not exhibit the Landau

pole any longer and includes absorptive effects due to gluon branching. The interesting

feature of such a model is that it does not contain any extra free parameter to be fitted to

the data, besides the ones entering in the parton-level calculation. In [3], such a model was

used in the framework of B-meson decays and it was found good agreement with the data

on the photon spectrum and on the hadron-mass distribution in radiative and semileptonic

decays, respectively. In [4] the effective coupling was employed in the framework of bottom-

quark fragmentation and, within the theoretical uncertainties, a reasonable fit of LEP and

SLD data on B-hadron spectra was obtained in both x and moment spaces.

Although the results in [3, 4] are encouraging, it is nonetheless mandatory to con-

sider more data and observables to validate the effective-coupling model. In this paper,

we consider charm-quark fragmentation in e+e− processes and investigate how our non-

perturbative model fares against D-meson data from LEP and B-factories. In fact, charm
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production involves pretty different scales with respect to b-quark fragmentation, and there-

fore the comparison with D-hadron spectra should help to shed light on our model. Con-

sidering charm production at the Z0 pole and at the Υ(4S) resonance, furthermore, is also

interesting to understand how our model behaves when the process hard scale changes.

Perturbative charm production will be described in the framework of perturbative frag-

mentation functions [7], using the same approximations carried out in [4], and the effective

coupling constant will be our only source of non-perturbative power corrections.

The plan of the present paper is the following. In section 2 we shall review the main

points of the parton-level computation, based on the perturbative fragmentation formalism,

and including large-x resummation in both coefficient function and initial condition of the

perturbative fragmentation function. In section 3 we shall discuss the effective coupling

constant and the inclusion of non-perturbative corrections to charm-quark fragmentation.

In section 4 we shall compare the results with charmed-meson spectra from LEP and B-

factories in x-space, whereas we present our analysis in Mellin moment space in section 5.

We shall finally summarize our main results in section 6.

2. Charm-quark production

In this section we shall discuss our calculation for charm-quark production. For the sake

of consistency, and given the tight relation between perturbative calculation and non-

perturbative corrections, our computation will be carried out along the lines of ref. [4].

Therefore, we shall just point out the main issues involved in the calculation and refer

to [4] for further details.

2.1 Perturbative fragmentation functions

We consider cc̄-pair production in e+e− annihilation at next-to-leading order (NLO) in the

strong coupling constant αS :

e+e− → P (Q) → c(pc)c̄(pc̄) (g(pg)) (2.1)

and define the charm-quark energy fraction:

x =
2pc · Q

Q2
. (2.2)

In the following, we shall consider charm production at LEP, where P is a Z0 boson

and Q = mZ , as well as c-quark fragmentation at the Υ(4S) resonance, i.e. Q = mΥ(4S)

and the cc̄ pair coming from the decay of a virtual photon (P = γ∗). In principle, in

e+e− annihilation charm quarks can also come from other processes, such as the decay of

bottomed hadrons produced via Z0(Υ(4S)) → bb̄. However, as we shall discuss in detail in

section 4, our analysis will only deal with direct cc̄ production.

The perturbative fragmentation approach [7], up to power corrections, factorizes the

energy distribution of a heavy quark, the charm quark in our case, as the convolution of a

coefficient function, associated with the emission off a massless parton, and a perturbative
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fragmentation function, expressing the transition of the light parton into a heavy quark.

This way, the c-quark spectrum reads:

1

σ

dσ

dx
(x,Q,mc)=

∑

i

∫ 1

x

dz

z

[

1

σ

dσ̂i

dz
(z,Q, µR, µF )

]MS

DMS
i

(x

z
, µF ,mc

)

+O ((mc/Q)p). (2.3)

In eq. (2.3), p ≥ 1, dσ̂i/dz is the differential cross section for the production of a massless

parton i after subtracting the collinear singularity in the MS factorization scheme; µR

and µF are the renormalization and factorization scales; σ is the NLO e+e− → qq̄(g)

cross section. Hereafter, we shall neglect charm production via g → cc̄ splitting. In

fact, we can anticipate that, when comparing with data, secondary cc̄ production will

be either subtracted off the sample which we shall analyse or negligible at the centre-of-

mass considered energy. This implies that i = c in eq. (2.3) and DMS
c is the perturbative

fragmentation function expressing the fragmentation of a massless c into a massive c. The

NLO MS coefficient function for e+e− → qq̄ processes can be found in [8].

The perturbative fragmentation function follows the DGLAP evolution equations [9,

10]; its value at a any scale µF can be obtained once an initial condition at µ0F is given.

In [7] the initial condition Dini
c (x, µ0F ,mc) was calculated in the NLO approximation and

its process-independence was established on more general grounds in [11]. It is given by:

Dini
c (x, αS(µ2

0R), µ2
0F ,m2

c) = δ(1−x)+
αS(µ2

0R)CF

2π

[

1+x2

1−x

(

ln
µ2

0F

m2
c

−2 ln(1−x)−1

)]

+

.

(2.4)

As discussed in [7], solving the DGLAP equations for an evolution from µ0F to µF ,

with a NLO kernel, allows one to resum leading (LL) αn
S lnn(µ2

F /µ2
0F ) and next-to-leading

(NLL) αn
S lnn−1(µ2

F /µ2
0F ) logarithms. Setting µ0F ≃ mc and µF ≃ Q, one resums the

large ln(Q2/m2
c) appearing in the massive NLO spectrum [7]. The resummation of such

mass logarithms is usually called collinear resummation. For the sake of working in the

same perturbative framework as in [4], in the following we shall consider NLO coefficient

functions and initial condition, along with NLL non-singlet DGLAP evolution. However,

one could go beyond such a level of accuracy and include NNLO corrections to the coefficient

function [12, 13], initial condition [14] and to the non-singlet splitting functions [15] entering

in the kernel of the DGLAP equations. The gluon-initiated contribution to the initial

condition, necessary to possibly extend the analysis to the singlet sector, was calculated

in [7] and [16] to NLO and NNLO, respectively.

2.2 Large-x resummation

Both coefficient function [7] and initial condition (2.4) contain terms, ∼ 1/(1 − x)+ and

∼ [ln(1 − x)/(1 − x)]+, enhanced when x approaches 1, which corresponds to soft- or

collinear-gluon radiation. One needs to resum such contributions to all orders to im-

prove the perturbative prediction (threshold resummation). As in [4], we shall implement

threshold resummation, which is process-dependent in the coefficient function and process-

independent in the initial condition [11], in the next-to-next-to-leading logarithmic (NNLL)

approximation, following the general method of [17, 18]. Large-x resummation is typically
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performed in Mellin moment-space, where the Mellin transform of the differential cross

section reads:

σN =

∫ 1

0
dx xN−1 1

σ

dσ

dx
. (2.5)

In N -space, the enhanced contributions ∼ αS/(1 − x)+ and αS [ln(1 − x)/(1 − x)]+ cor-

respond to single (∼ αS ln N) and double (∼ αS ln2 N) logarithms of the Mellin variable

N . The resummed coefficient function is given by the following generalized exponential

function [11]:

∆
(C)
N

[

αS(µ2
R), µ2

R, µ2
F , Q2

]

= exp
{

G
(C)
N

[

αS(µ2
R), µ2

R, µ2
F , Q2

]

}

, (2.6)

where

G
(C)
N

[

αS(µ2
R), µ2

R, µ2
F , Q2

]

=

∫ 1

0
dz

zN−1−1

1−z

{

∫ Q2(1−z)

µ2
F

dk2

k2
A

[

αS(k2)
]

+B
[

αS

(

Q2(1−z)
)]

}

.

(2.7)

The exponent G
(C)
N

[

αS(µ2
R), µ2

R, µ2
F , Q2

]

resums the large logarithms of the Mellin variable;

in the NNLL approximation, one keeps in the exponent terms ∼ αn
S lnn+1 N (LL), ∼

αn
S lnn N (NLL) and ∼ αn

S lnn−1 N (NNLL). As in [18], the integration variables are z =

1−xg, xg being the gluon energy fraction, and k2 = (pc+pg)
2(1−z). In soft approximation,

z ≃ x; for small-angle radiation k2 ≃ k2
⊥, the gluon transverse momentum with respect to

the c.

In (2.7), function A(αS) resums soft and collinear radiation, while B(αS) includes

all-order collinear and hard emissions. They can be expanded as a series in αS as:

A(αS) =
∞

∑

n=1

(αS

π

)n

A(n), (2.8)

B(αS) =

∞
∑

n=1

(αS

π

)n

B(n). (2.9)

In the NLL approximation, one needs to include the first two coefficients of A(αS) and the

first of B(αS); to NNLL accuracy, A(3) and B(2) are also needed. The coefficients A(1), A(2)

and B(2) can be found in [18]; more recent is the calculation of the NNLL contributions

A(3) [19] and B(2) [20].

Likewise, the threshold-resummed initial condition reads [11]:

∆
(D)
N

[

αS(µ2
0R), µ2

0R, µ2
0F ,m2

c

]

= exp
{

G
(D)
N

[

αS(µ2
0R), µ2

0R, µ2
0F ,m2

c

]

}

, (2.10)

where

G
(D)
N

[

αS(µ2
0R), µ2

0R, µ2
0F ,m2

c

]

=

∫ 1

0
dz

zN−1 − 1

1 − z

{

∫ µ2
0F

m2
c(1−z)2

dk2

k2
A

[

αS(k2)
]

+D
[

αS

(

m2
c(1 − z)2

)]

}

, (2.11)

– 4 –



J
H
E
P
1
2
(
2
0
0
7
)
0
2
9

with k2 and z defined as in (2.7). To NNLL accuracy, we need A(1), A(2) and A(3) and the

first two coefficients of

D(αS) =
∞

∑

n=1

(αS

π

)n

D(n), (2.12)

namely D(1) and D(2). Function D(αS), called H(αS) in [11], is characteristic of the frag-

mentation of heavy quarks and resums soft and large-angle radiation. Its O(αS) coefficient

can be found in [11], while D(2) can be read from the formulas in [21, 22, 14]. In any case,

all relevant NNLL threshold-resummation coefficients are reported in [4].

In the phenomenological analysis of [4], the inclusion of NNLL effects, and especially

the contribution ∼ α3
SA(3) to function A(αS), turned out to be necessary to reproduce

the b-fragmentation data. In fact, as we shall point out in the next section, when using

the effective coupling constant we need to redefine the threshold-resummation coefficients

from the third order on. This way, it turns out that A(3) gets enhanced. The inclusion of

NNLL terms in the resummed exponents shifted the B-hadron spectrum towards lower xB

values and played a crucial role to obtain a reasonable description of LEP and SLD data

(see figure 4 in ref. [4]).

As in [3, 4], the Mellin transforms of our resummed expressions will be performed

exactly and not according to the step-function approximation, which was instead employed

in the resummations carried out in refs. [11, 18].1 In fact, as we shall discuss later, we will

model non-perturbative effects to charm fragmentation by means of an effective coupling

constant and it was found in [26] that the step-function approximation would suppress most

power corrections included in the physical observables via the analytic coupling. In any

case, as thoroughly detailed in [4], the issue of the power corrections which are transferred

to the cross section by the effective coupling, and whether it is a better approximation

performing the Mellin transforms in an exact or approximated way is currently an open

issue and we cannot draw any firm conclusion. A careful analysis, along the lines of [27],

will be anyway very welcome to clarify this point. For the time being, the exactness of the

Mellin transforms should be seen as part of our non-perturbative model. We just point out

that, unlike refs. [11, 18], where only logarithms of N are resummed, in our approach even

some constants and power-suppressed O(1/N) terms are included in the exponents (2.6)

and (2.10) thanks to the exact Mellin transforms. This implies that, any time we improve

the accuracy of the large-x resummation, e.g., from NLL to NNLL, we include in the

resummed exponent not only subleading logarithms of N , but also constants and power

corrections. This tight relation between perturbative and non-perturbative corrections is

indeed a peculiar feature of our effective-coupling model.

As in [4], the resummed results are matched to the exact NLO coefficient function and

initial condition. A difference with respect to the approach followed in ref. [4] is that we

implement the so-called ln R-matching [23, 24], corresponding to matching the logarithms

of resummed and NLO expressions. We briefly review this matching strategy and how it

1In [11, 18], the longitudinal-momentum integration is done after performing the replacement x
N

→

1−Θ
“

1 − z −
e
−γE

N

”

, which is a correct approximation to NLL accuracy. Beyond NLL, it can be generalized

following the prescription presented in [25].
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compares with the standard method implemented in [4]. Referring, e.g., to the coefficient

function, matched to the exact NLO one, it can be written (see eq. (4.2) in ref. [4]) as:

C
′res
N

[

αS(µ2
R), µ2

R, µ2
F , Q2

]

= K(C)
[

αS(µ2
R), µ2

R, µ2
F , Q2

]

∆
(C)
N

[

αS(µ2
R), µ2

R, µ2
F , Q2

]

+d
(C)
N

[

αS(µ2
R), µ2

R, µ2
F , Q2

]

. (2.13)

In (2.13), ∆
(C)
N is the resummed coefficient function, given in eq. (2.6),

K(C)
[

αS(µ2
R), µ2

R, µ2
F , Q2

]

= 1 + αS(µ2
R)Q(µ2

F , Q2) (2.14)

is a hard factor, including the constant terms which are present in the NLO coefficient

function but are not resummed in ∆
(C)
N ,

d
(C)
N

[

αS(µ2
R), µ2

R, µ2
F , Q2

]

= αS(µ2
R)Y (µ2

F , Q2) (2.15)

is a remainder function, collecting the left-over NLO terms, suppressed at large N . The

explicit expression for functions Q(µ2
F , Q2) and Y (µ2

F , Q2) can be read from the formulas

in [4]. A similar expression holds for the resummed initial condition matched to the NLO

result (see eq. (5.17) in ref. [4]).

According to the ln R-matching, functions K(C) and d(C) are to be replaced by expo-

nential functions of their O(αS) terms and eq. (2.13) should read:

Cres
N

[

αS(µ2
R), µ2

R, µ2
F , Q2

]

= exp[αS(µ2
R)Q(µ2

F , Q2)] × ∆
(C)
N

[

αS(µ2
R), µ2

R, µ2
F , Q2

]

× exp[αS(µ2
R)Y (µ2

F , Q2)]. (2.16)

From eq. (2.16), one can easily check that the logarithms of NLO and resummed functions

are actually matched. In particular, eq. (2.16) differs from (2.13) only by terms of O(α2
S)

or higher, but it is smoother at small and large values of N (x), thanks to the exponential

functions in eq. (2.16). It was in fact pointed out in [4] that, since the remainder function

contains terms ∼ ln x and ∼ ln(1 − x), the physical differential cross sections exhibit

oscillating behaviour near x ≃ 0 and x ≃ 1. Exponentiating the O(αS) contributions to

the remainder function should therefore improve the prediction for small and large values of

x. The ln R-matching prescription will be adopted in the following even for the resummed

initial condition of the perturbative fragmentation function.

The c-quark spectrum will finally read in N -space as follows:

σc
N

[

αS(µ2
0R), αS(µ2

R), µ2
0R, µ2

R, µ2
0F , µ2

F ,m2
c , Q

2
]

= Cres
N

[

αS(µ2
R), µ2

R, µ2
F , Q2

]

×EN

[

αS(µ2
0F ), αS(µ2

F )
]

(2.17)

×Dini,res
N

[

αS(µ2
0R), µ2

0R, µ2
0F ,m2

c

]

.

In eq. (2.17), EN

[

αS(µ2
0F ), αS(µ2

F )
]

is the DGLAP operator for an evolution between the

scales µ0F and µF . Throughout this paper, we shall implement EN

[

αS(µ2
0F ), αS(µ2

F )
]

in

the non-singlet approximation; its explicit expression can be found, e.g., in ref. [7].
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3. Effective coupling constant

We shall include non-perturbative corrections to charm fragmentation using, as in [4],

a model, based on an extension of refs. [5, 6], which includes power corrections via an

effective strong coupling constant, and does not introduce any further parameter to be

tuned to experimental data. We review below the main points of our model.

As discussed in ref. [28], in resummed calculations the momentum-independent cou-

pling constant is replaced by the following integral over the discontinuity of the gluon

propagator:

αS → i

2π

∫ k2

0
ds Discs

αS(−s)

s
, (3.1)

where k2 is the gluon transverse momentum relative to the emitter, defined, e.g., as in

eq. (2.7). In eq. (3.1) the discontinuity is given by:

DiscsF (s) = lim
ǫ→ 0+

[F (s + iǫ) − F (s − iǫ)] . (3.2)

At LO, e.g., αS(−s) reads:

αS,LO(−s) =
1

β0[ln(|s|/Λ2) − iπΘ(s)]
, (3.3)

where β0 = (33 − 2nf )/(12π) is the first-order term of the QCD β-function, nf is number

of active flavours, and Λ is the QCD scale, e.g., in the MS renormalization scheme.

The integral (3.1) is usually carried out neglecting the imaginary part, ∼ iπ, in the

denominator of αS(−s), i.e. assuming

ln
|s|
Λ2

≫ π (3.4)

in eq. (3.3). The approximation (3.4) allows one to avoid the Landau pole, so that the

integral (3.1) turns out to be roughly equal to the strong coupling constant evaluated at

the upper integration limit:

i

2π

∫ k2

0
ds Discs

αS(−s)

s
≃ αS(k2). (3.5)

In fact, resummed formulas typically use the transverse momentum k2 as the scale of the

strong coupling constant [18].

As in [4], we shall follow a different approach and avoid the Landau pole by using in

eq. (3.1) a regularized coupling constant ᾱS , defined as follows [5, 3]:

ᾱS(k2) =
1

2πi

∫ ∞

0

ds

s + k2
Discs αS(−s). (3.6)

Inserting in (3.6) the LO expression (3.3) and performing the integration, we obtain:

ᾱS,LO(k2) =
1

β0

[

1

ln(k2/Λ2)
− Λ2

k2 − Λ2

]

. (3.7)

– 7 –
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If we compare eq. (3.7) with the LO standard coupling, i.e.

αS,LO(k2) =
1

β0 ln(k2/Λ2)
, (3.8)

we learn that in eq. (3.7) a power-suppressed term, relevant at small k2, has subtracted

off the Landau pole k2 = Λ2, which is instead present in (3.8). At large k2, ᾱS(k2)

is nonetheless still roughly equal to αS(k2). Such results can be generalized to higher

accuracy levels, using the two- and three-loop beta function, as done in [4].

The effective coupling constant α̃S(k2) will be still defined as in eq. (3.1), but using

the analytic coupling (3.6) in the integrand function:

α̃S(k2) =
i

2π

∫ k2

0
ds Discs

ᾱS(−s)

s
. (3.9)

Using the LO result (3.7), we can perform the integral (3.9) and obtain our LO effective

coupling constant:

α̃S,LO(k2) =
1

β0

{

1

2
− 1

π
arctan

[

ln(k2/Λ2)

π

]}

. (3.10)

The NLO and NNLO expressions of α̃S(k2) can be found in [4]. It is straightforward to

show that eq. (3.10), as well as its higher-order generalizations, is free from the Landau

pole and includes power-suppressed contributions at small momenta. Also, as discussed

in [26], eq. (3.9) accounts for absorptive effects due to gluon branching, since we are not

neglecting any longer the imaginary part in the denominator of αS(−s).

In principle, both analytic coupling constants (3.6) and (3.9) are possible candidates to

model non-perturbative corrections.2 However, as debated in [4], it is only (3.9) which gives

an acceptable description of b-fragmentation data and we shall therefore stick to α̃S(k2) to

model power corrections to charm fragmentation as well.

The relation between effective and standard coupling constant for ln(k2/Λ2) ≫ π reads:

α̃S(k2) = αS(k2) − (πβ0)
2

3
α3

S(k2) + O(α4
S). (3.11)

From eq. (3.11) we learn that at high energy the difference between α̃S(k2) and αS(k2) starts

from O(α3
S). Moreover, eq. (3.11) dictates that, when employing the effective coupling

constant, we will have to redefine the soft-resummation coefficients from order α3
S on. As

anticipated in subsection 2.2, the NNLL coefficient A(3) of the O(α3
S) term of function

A(αS), entering in eqs. (2.7) and (2.11), will get enhanced according to:

A(3) → Ã(3) = A(3) +
(πβ0)

2

3
A(1). (3.12)

The other assumptions contained in our model are also detailed in ref. [4] and we do not

report them here for the sake of brevity. We just point out that, when dealing with higher

2In the literature [4, 5], one usually refers to ᾱS(k2) and α̃S(k2) as effective space- and time-like coupling

constants, respectively.
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orders of α̃S(k2), we shall adopt the so-called ‘power-expansion’ choice, which implies that

we shall evaluate the powers α̃n
S(k2) after computing the integral over the discontinuity:

α̃n
S(k2) =

[

i

2π

∫ k2

0
ds Discs

ᾱS(−s)

s

]n

. (3.13)

On the contrary, the original proposal in [5] consisted in calculating the discontinuity of

ᾱn
S(−s) before integrating over s (‘non power-expansion’ choice). As discussed in [4], the

non-power expansion prescription would yield a rather poor description of b-fragmentation

data.

The purpose of the present paper is indeed to push the effective-coupling model to

lower energies and compare its predictions with data on c-flavoured hadron production.

For a consistent comparison with the results obtained in the framework of B-hadron pro-

duction and decay, throughout this paper, as in [3, 4], we shall use α̃S(k2) evaluated to

three-loop accuracy, everywhere in our calculation, i.e. in both coefficient function and

perturbative fragmentation function. Hereafter, the effective coupling constant (3.9) will

be our only source of non-perturbative corrections and we shall not introduce any further

non-perturbative fragmentation function.

It was pointed out in [4] that power-correction effects in the initial condition of the

perturbative fragmentation function are more relevant than in the coefficient function.

The typical c-fragmentation scales at which the coupling constant is evaluated are, in fact,

C = Q
√

1 − x in the coefficient function and S = mc(1 − x) in the initial condition. C

and S are the integration limits in the resummed exponents as well as the arguments

of αS in functions B
[

αS(C2)
]

and D
[

αS(S2)
]

, appearing in the large-x resummation

expressions (2.7) and (2.11). If we calculate C and S for Q = mZ and x = 0.5, where, as will

be shown in the next section, the D-meson spectrum in e+e− annihilation is roughly peaked,

we shall get C ≃ 46 GeV, S ≃ 0.9 GeV, α̃S(C2) ≃ 0.13 and α̃S(S2) ≃ 0.35. Therefore,

non-perturbative corrections are more important in the initial condition, depending on

S, than in the coefficient function. Comparing now the values of α̃S at the charm- and

bottom-mass scales, we find that α̃S(m2
c) ≃ 0.3 is appreciably higher than α̃S(m2

b) ≃ 0.2.

However, it is interesting to notice that the scales S and C, and hence α̃S(S2) and α̃S(C2),

are roughly the same for bottom and charm production if evaluated at the maxima of the

respective spectra at LEP, i.e. x=0.5 for D- and x = 0.8 for B-hadron energy distributions.

Before closing this section, we would like to stress that, in its current formulation,

our parameter-free model works in the same fashion for B as well D mesons, up to the

replacement mb → mc. Also, our model does not distinguish among baryons and mesons,

spin-1 and spin-0, charged and neutral hadrons. It was therefore argued in [4] that possible

extensions of our model may consist in including a correcting term, so that

α̃S(k2) → α̃S(k2) + δα̃S(k2) , (3.14)

where α̃S(k2) is still the effective coupling discussed above, and δα̃S(k2) may depend, e.g.,

on whether we have baryons or mesons, B’s or D’s, and so on. The analysis which we shall

undertake herafter should therefore be helpful to establish, for the time being, whether the

contribution δα̃S(k2) is mandatory or not.
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4. Results in x-space

In this section we compare our results in x-space with experimental data on c-flavoured

hadron production in e+e− annihilation. Hadronization effects will be accounted for by

employing the analytic coupling constant (3.9) at NNLO. Whenever we use α̃S(k2) instead

of the standard αS(k2), the charm-quark energy fraction will be replaced by its hadron-level

counterpart:

xD =
2pD · Q

Q2
, (4.1)

with pD being the momentum of a D-hadron. The D spectrum in moment space will be

written in a form analogous to eq. (2.17), up to αS → α̃S :

σ
(D)
N (µ2

R, µ2
0R, µ2

0F , µ2
F ,m2

c , Q
2) = Cres

N

[

α̃S(µ2
R), µ2

R, µ2
F , Q2

]

× EN

[

α̃S(µ2
0F ), α̃S(µ2

F )
]

×Dini,res
N

[

α̃S(µ2
0R), µ2

0R, µ2
0F ,m2

c

]

. (4.2)

The x-space result is then recovered by performing an inverse Mellin transform:

σ(D)
(

xD; µ2
R, µ2

0R, µ2
0F , µ2

F ,m2
c , Q

2
)

=

∫ γ+i∞

γ−i∞

dN

2πi
x−N

D σ
(D)
N (µ2

R, µ2
0R, µ2

0F , µ2
F ,m2

c , Q
2),

(4.3)

where γ is a positive constant. As discussed in [4], since the effective α̃S(k2) does not ex-

hibit the Landau pole any longer, we do not need any prescription, such as the well-known

minimal prescription [29], to avoid the Landau pole in the integration (4.3). The integral

will be performed in a numerical way, along the lines of [4]; it was checked that the results

are stable when varying the integration contour, i.e. the constant γ.

As in ref. [30], we shall consider LEP data from the ALEPH collaboration [31], taken

at the Z0 pole, and data from the experiments CLEO [32] and BELLE [33], at the Υ(4S)

resonance. We shall investigate neutral as well as charged D and D∗ mesons; in fact, we

just pointed out that our model does not distinguish the hadron electric charge or spin.

As discussed in [30], electromagnetic initial-state radiation (ISR) effects can modify

the shape of charmed-meson spectra. Such effects are important especially at B-factories,

where the emission of photons from the e+e− pair, whose rate is ∼ α ln(Q2/m2
e), me being

the electron mass, may significantly decrease the energy in the centre-of-mass system. The

CLEO and BELLE data did not account for such effects, which were instead implemented

in the analysis [30]. In the following, we shall compare with data corrected for ISR effects:

a discussion on the impact of such contributions on D-spectra in x- and N -spaces can be

found in [30]. Such effects were also implemented to correct the ALEPH data, but it was

understood that at the Z0 pole they are quite negligible.

The non-perturbative model based on the effective coupling constant (3.9) does not

have any free parameter to be tuned to the data which we shall consider. We shall nonethe-

less vary the parameters entering in the perturbative calculation in such a way to give an

estimate of the theoretical uncertainty on our prediction. We change each quantity sepa-

rately, keeping the others to their default values, in such a way to avoid too many runs.

Following [4], the default values of our perturbative parameters will be µR = µF = Q

and µ0R = µ0F = mc, where µR and µF are the renormalization and factorization scales
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in the coefficient function, and µ0R and µ0F in the initial condition of the perturbative

fragmentation function. The hard scale will be Q = mZ or mΥ(4S) at LEP or B-factories,

with mZ = 91.19 GeV and mΥ(4S) = 10.58 GeV. We shall vary µR and µF between Q/2 and

2Q, µ0R and µ0F between mc/2 and 2mc. As in [4], we shall let αS(m2
Z) run in the range

0.117 < αS(m2
Z) < 0.121, using αS(m2

Z) = 0.119 as our default value. The corresponding

variation range of the effective coupling constant is 0.115 < α̃S(m2
Z) < 0.119. For the

purpose of mc, as thoroughly discussed in [4], using the pole or the MS heavy-quark mass

definition in the initial condition is equivalent for calculations relying on the NLO/NLL

approximation. However, in the NNLL large-x resummation of the initial condition, and

in particular in the definition of the coefficient D(2) in eq. (2.11), we are employing results

of the NNLO computation in [14], which uses the heavy-quark pole mass. Hence, we

should use the charm pole mass as well. Nonetheless, as pointed out in [4], when we use

the effective coupling constant to describe hadronization corrections, it is not uniquely

determined whether mc should be the quark or the hadron mass. As done for the purpose

of the bottom-quark mass, we shall adopt a conservative choice and vary mc in the range

1.5 GeV < mc < 2.1 GeV, that includes the current estimations for the charm pole mass

as well as D-hadron masses [34]. Our default value will be mc=1.8 GeV.

As for the DGLAP evolution operator, when evolving from µ0F ≃ mc to µF ≃ Q,

one typically crosses the bottom-quark mass threshold mb. Ref. [35] computed at NLO

the matching conditions for the perturbative fragmentation function when crossing heavy-

flavour thresholds. In our study, however, since we are working in the non-singlet ap-

proximation and we are not accounting for gluon splitting and flavour mixing, we shall

neglect such matching conditions. In fact, we checked that our results change very little

according to whether we set in the DGLAP evolution operator, e.g, nf = 4 or nf = 5 as

the number of active flavours. In any case, in our phenomenological analysis, whenever we

have µ0F < mb < µF , we shall implement the following factorized form for the non-singlet

DGLAP evolution operator:

EN

[

α̃S(µ2
0F ), α̃S(µ2

F )
]

= EN

[

α̃S(µ2
0F ), α̃S(m2

b)
]

× EN

[

α̃S(m2
b), α̃S(µ2

F )
]

, (4.4)

with nf = 4 and nf = 5 below and above the bottom-quark mass threshold, respectively.

The b-quark mass will be varied in the range 4.7 GeV < mb < 5.3 GeV, as in [4], with

mb = 5 GeV being our default value. Elsewhere in our calculation, nf will be consistently

chosen according to the energy scale we are dealing with.

4.1 Comparison with ALEPH data

We shall first consider ALEPH data on D∗+ production. As detailed in [31], such mesons

can be in general produced from a Z0 → cc̄ decay, from the decay of a primary b-flavoured

hadron produced in Z0 → bb̄, from gluon splitting to cc̄ or bb̄ pairs, which subsequently

hadronize or decay into a D∗+. The ALEPH Collaboration was able to subtract the

Z0 → bb̄ and gluon-splitting contributions off and published the spectrum of D∗+ mesons

coming only from the cc̄ primary source. In the following, we shall compare the predictions

of our model with such a subsample, which will allow us to neglect secondary charm
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production in the perturbative calculation as well as the singlet component of the DGLAP

evolution operator, which in principle should play a role at LEP energies. Indeed, it was

found out in [30] that implementing the singlet contribution does have an effect at xD < 0.4,

and actually worsens the comparison with the ALEPH D∗+ data coming from direct cc̄

production (see figures 13 and 14 in ref. [30]).

In figure 1 we present the spectrum given by our model, along with the D∗+ ALEPH

data, and investigate the dependence on the factorization scales µF and µ0F (figure 1

(a)), and on the choice of αS(m2
Z) and mc (figure 1 (b)). For the sake of comparison,

both data and theoretical predictions are normalized to unity. As already observed in [4],

the dependence on µ0F , the scale entering in the initial condition of the perturbative

fragmentation function, is fairly large, while the impact of the choice of µF is pretty small.

In particular, setting a lower value of µ0F , e.g. µ0F = mc/2, tends to deplete the small-xD

region of the spectrum and to enhance the event fraction around the peak. Also, the peak

is slightly shifted to higher xD if we choose µ0F = mc/2. The prediction obtained for

µ0F = 2mc reproduces quite well the low-xD data, while discrepancies are still present in

the middle-high range.

The dependence on αS(m2
Z) and mc is also quite relevant, as can be learned from

figure 1 (b). In particular, a low value of mc, i.e. mc = 1.5 GeV, consistent with the

quark mass rather than the D∗+-meson mass, gives a pretty good description of the peak,

but it worsens the comparison for xD > 0.7. On the contrary, a high value of mc, such as

2.1 GeV, significantly moves the peak towards large xD and worsens the overall comparison.

As for the effect of the variation of αS(m2
Z), we find that it shifts the position of the peak:

the lower αS(m2
Z), the higher the value of xD at which the D spectrum is peaked. The

dependence on the renormalization scales µR and µ0R is very little, and we do not present

the corresponding plots for the sake of brevity. We also varied mb, the bottom-quark mass

entering in eq. (4.4), but found out that it has negligible impact on the energy distribution.

Overall, we can say that our model gives an acceptable description of the raise at low

and average values of xD, while discrepancies are present around the peak, unless one sets

a relatively low value for mc, and at very large xD. Our curves tend to be harder than

the data and approach zero at large xD more rapidly. Although the comparison at very

large xD is not completely satisfactory, using the lnR-matching prescription, discussed

in subsection 2.2., has nonetheless improved the spectrum near the endpoint xD = 1,

as it is smoother and not oscillating any longer. We checked that if we had used the

standard matching between NLO and resummed expressions as in [4], the charmed-meson

distributions would have become negative for xD
>
∼ 0.9.

In any case, we are aware that our model, based on an extrapolation of perturbation

theory, up to the replacement of the coupling constant αS(k2) → α̃S(k2), cannot be com-

pletely reliable at very large xD. One can roughly estimate [11] xD,max ≃ 1−Λ/mc ≃ 0.85

the maximum value of xD at which our model, or any model based on simple parametriza-

tions of power corrections, such as the non-perturbative fragmentation functions [1, 2], can

be trusted. In fact, the authors of ref. [30] managed to improve the comparison at large

xD, but they had to introduce a further free parameter which they tuned to data. In detail,
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Figure 1: Comparison of the prediction yielded by our model with data from ALEPH on D∗+

production a LEP. In (a) we investigate the dependence on µF (solid lines) and µ0F (dashes); in (b)

the effect of the choice of αS(m2
Z
) (solid) and mc (dashes). Such quantities are varied as discussed

in the text.

they replaced the Mellin variable N according to:

N → N
1 + f/N ′

1 + fN/N ′
, (4.5)

where N ′ = exp[1/
(

β0αS(µ2
R)

)

] in the coefficient function and N ′ = exp[1/
(

2β0αS(µ2
0R)

)

]

in the initial condition. Ref. [30] used then f = 1.25 in its phenomenological analysis,

as this choice led to good fits to charm-fragmentation data. In principle, we could also

perform the replacement (4.5) and tune f . In fact, modifying the energy distribution

at large xD will also have an impact at smaller values of xD, since we have kept the

normalization of data and theory curves fixed to unity. However, in this way our model

would lose its crucial feature to be free from tunable parameters. Furthermore, given the

theoretical uncertainty on our prediction, the value of f will depend on the particular set

of perturbative parameters chosen. Therefore, for the time being, we prefer to stick to our

parameter-free modelling of the hadronization and to postpone a more careful investigation

of the very large-xD regime of our spectra to future work, with the NNLO corrections

implemented. In any case, we should never forget that, for the sake of consistency, whenever

we modify the perturbative accuracy or the non-perturbative model, we should always

reconsider the studies on B-hadron production and decay and check whether the results

obtained in refs. [3] and [4] still hold.

In the present analysis, as in ref. [4], we discard few points at very large xD and limit

ourselves to xD ≤ 0.85 when evaluating the χ2 from the comparison with the data. Even

in this range, using our default values for the parameters in the parton-level computation,

we are not able to acceptably reproduce the data, as we obtain χ2/dof = 56.47/17. A

better description of the data is nonetheless obtained if, e.g., we keep all quantities to their

default values, but set µ0F = 2mc (χ2/dof = 27.18/17) or αS(m2
Z) = 0.121 (χ2/dof =

30.52/17). Setting mc = 1.5 GeV, we find χ2/dof = 32.29/17. As we are not fitting any
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non-perturbative parameter to the data, such values of χ2 are acceptable. Also, they are

of similar magnitude to those obtained in [4] from the comparison with B-hadron energy

distributions at the Z0 pole for xB < 1 − Λ/mb.

The overall impact of the inclusion of non-perturbative corrections at LEP energies via

our model can be learned from figure 2, where we present our most significant predictions,

i.e. the ones obtained with µ0F = 2mc and mc = 1.8 GeV (solid line), and with µ0F = mc

and mc = 1.5 GeV (dotted), keeping the other quantities to their default values. In figure 2

we also show the ALEPH D∗+ data and the purely perturbative results of ref. [11], where

the authors used the standard coupling constant and resummed NLL soft and collinear

contributions to both coefficient function and perturbative fragmentation function. The

role played by power corrections is clearly remarkable throughout all xD-spectrum, and

is essential to obtain an acceptable description of the data. In fact, the parton-level cal-

culation of [11], which is the same as the one employed in [30], needs to be convoluted

with a non-perturbative fragmentation function to reproduce the data. We can also note

in figure 2 that, while setting µ0F = 2mc and mc = 1.8 GeV gives the lowest χ2, the data

around the peak are better described if we instead choose mc = 1.5 GeV and µ0F = mc.

Before closing this subsection, we remind that the possible reasons determining the

fairly large theoretical uncertainties were already listed and detailed in [4]. In particular,

we have resummed large-x contributions to the coefficient function and initial condition in

the NNLL approximation, but we have still matched the resummation to the NLO exact

results, thus generating a mismatch between the NNLL terms in the resummed exponents

(∼ αn
S ln N , etc.) and the remainder functions. We believe that the uncertainties should be

milder if we used the exact NNLO results [12 – 14, 16]. Moreover, lower theoretical errors

should be expected if we also employed NNLL non-singlet DGLAP evolution equations,

using NNLO non-singlet splitting functions [15].

With respect to the analysis on B-hadron production, the effect of the choice of scales

and masses is here even more relevant: the dependence on such quantities is typically

logarithmic, hence larger once they vary around mc rather than mb. It is however interesting

to notice that, unlike the comparison with the B-hadron data, where setting µ0F = mb/2

gave the best description of the data [4], the charm-fragmentation data seem to prefer a

quite high value of µ0F , since µ0F = 2mc yields the lowest χ2. We believe that a full

NNLO/NNLL analysis should clarify this issue as well.

4.2 Comparison with CLEO and BELLE data

We would like to compare the predictions of our model with the data on D0, D∗0 and

D∗+ production from the CLEO [32] and BELLE [33] experiments, collected at the Υ(4S)

resonance. In fact, since the value of the hard scale is much smaller than at LEP, such a

comparison will help to shed light on the performance of our model and calculation at lower

energies. Furthermore, ref. [30], using a NLO/NLL calculation and a non-perturbative

fragmentation function with three parameters, managed to fit all B-factory data, whereas

some discrepancies were found with respect to the ALEPH data after evolving to LEP

energies. Our case is clearly different, as our non-perturbative model is not tunable to data,
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Figure 2: Results on charmed-hadron production at LEP (j = D), setting µ0F = 2mc and

mc = 1.8GeV (solid), mc = 1.5GeV and µ0F = mc (dots), compared with the perturbative parton-

level calculation of [11] (j = c, dashes) and the ALEPH D∗+ data.

but it will be nonetheless cumbersome to investigate how our predictions fare with respect

to the different data sets at the Υ(4S) resonance and estimate the theoretical uncertainty.

In figure 3 we present the comparison with CLEO and BELLE data on D0 production,

corrected for ISR effects. As pointed out in [30], at the Υ(4S) resonance the contribution of

cc̄ pair production via gluon splitting is negligible, hence it is safe sticking to the non-singlet

approximation of the DGLAP evolution equations, as done for analysis at LEP energies.

The data sets which we consider are separately normalized to 1, for the sake of a consistent

comparison with the theory curves, whose first moment reads, by definition, σN=1 = 1.

We vary renormalization and factorization scales, mc and αS(m2
Z) along the lines of our

comparison with ALEPH. Figure 3 (a) exhibits the dependence on µF and µ0F ; figure 3

(b) the one on αS(m2
Z) and mc. We do not present the effect of changing µR, µ0R and mb,

since it is very little, as already found at the Z0 pole.

Unlike the comparison with the ALEPH data, where, though within the experimental

and theoretical uncertainties, we succeeded in getting a reasonable fit of the data, our

prediction lies quite far from the CLEO and BELLE D0 data and there is no choice of

parameters and scales, within our ranges, which can accommodate the experimental data.

In fact, such data exhibit very small errors and, even if we limit our analysis to xD < 0.85,

as we did before, we still obtain quite large χ2, typically χ2/dof >
∼ O(10). It is nonetheless

interesting to notice that the best comparison is obtained for mc = 1.5 GeV: in this case,

one is able at least to reproduce the rise of the spectrum up to xD ≃ 0.6, but still uncapable

of describing the peak and the large-xD tail. As pointed out when comparing with ALEPH,

a full NNLO/NNLL analysis is mandatory to reduce the theoretical error and should shed

light on the dependence on the quark (meson) mass as well. Ref. [30] also presented D+
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Figure 3: As in figure 1, but comparing with D0 data from CLEO and BELLE experiments. In

(a) we vary the factorization scales µF (solid) and µ0F (dashes); in (b) αS(m2
Z
) (solid) and mc

(dashes).

data from CLEO and BELLE; the comparison with our predictions is however qualitatively

similar to the one presented in figure 3 and we do not show it for brevity.

We present in figure 4 the comparison of the predictions yielded by our model with

CLEO and BELLE data on D∗0-meson production. The comparison with the CLEO D∗0

data, which are affected by pretty small errors, is quite unsatisfactory and the χ2 values

high. The BELLE spectrum instead exhibits larger errors, so that we are able to compare

with the data at xD < 0.85 with quite small χ2 values. With our default parametrization,

we obtain χ2/dof = 45.23/36, while an even lower result, χ2/dof = 32.10/36, is obtained

if we set µ0F = 2mc, the same choice leading to the best fit to the ALEPH D∗+ spectrum.

We finally show in figure 5 the comparison of our predictions with the data on D∗+

production at CLEO and BELLE. Following [30], as far as the BELLE data are concerned,

we present separately the spectra of the mesons decaying according to D∗+ → D+ and

D∗+ → D0, with the former presenting larger errors. The comparison is qualitatively

similar to figure 4, with our model capable of describing well the data up to xD ≃ 0.6, but

failing to reproduce the peak and the large-xD tail. Drawing a parallel between figure 5

and figure 1, where our model, though within the uncertainties, led to a better comparison

with respect to the ALEPH D∗+ data, one may argue that some major problems with our

approach seem to appear once the process hard scale decreases. Later on, in section 6,

we shall comment more about possible extensions of our calculation and non-perturbative

model, which may eventually improve the comparison with the B-factory data in x-space.

As done when comparing with ALEPH, we show in figure 6 the prediction leading to

the best fit to the B-factory data, i.e. the one obtained for µ0F = 2mc, along with the

BELLE D∗0 spectrum and the NLO/NLL perturbative prediction from ref. [11]. We note

that the parton-level result is sharply peaked at large x, even more than in figure 2: in

fact, the smaller phase space available at the Υ(4S) resonance with respect to the Z0 pole
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Figure 4: Comparison of the prediction yielded by our effective-coupling model with D∗0 data

from BELLE and CLEO. The scales are varied as in figures 1 and 3.

Figure 5: As in figures 3–4, but comparing with the CLEO and BELLE data on D∗+ production.

When presenting the BELLE data, we distinguish the D∗+ → D0 from the D∗+ → D0 decay mode.

enhances the probability of producing cc̄ pairs near the threshold x = 1. Overall, the

impact of non-perturbative corrections in the coupling constant at the Υ(4S) resonance

looks even more important than at LEP energies.

5. Results in N-space

In this section we present our analysis in Mellin space and compare our results with the

experimental moments of the D-hadron cross section, measured by ALEPH, CLEO and

BELLE. The data which we consider are the same as the ones which were analysed in the

previous section in x-space. It was advocated in refs. [24, 39] that working in N -space can

be theoretically preferable, as one does not need any explicit form for the non-perturbative

fragmentation function and its moments can be fitted directly from the data. Of course,
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Figure 6: The solid line is our best prediction for charmed-hadron production at the Υ(4S)

resonance (j = D); the dashed line is the purely perturbative c-quark spectrum (j = c) yielded by

the computation in [11]. Also presented are the BELLE data on the D∗0 spectrum.

this issue does not apply to our case, since we are not fitting any parameter, but nonetheless

it is still worthwhile to compare our results with the experimental moments. The N -space

investigation will be particularly interesting at the Υ(4S) resonance, where the x-space

analysis has exhibited quite serious discrepancies.

We calculate the moments of the D-hadron cross section directly from the N -space

formulas, i.e. eq. (4.2), and vary masses and scales as x-space, for the sake of estimating

the theoretical uncertainty. The experimental moments are the same as the ones presented

in ref. [30], with the effect of electromagnetic initial-state radiation subtracted off. We just

rescale them so that the first moment of all data sets reads σN=1 = 1, as happens for our

theoretical results. Following [4], we first evaluate the uncertainties on the moments due

to to the variation of µF , µ0F , mc and αS(m2
Z) separately, and then estimate the overall

theoretical error summing in quadrature all individual uncertainties (see table 2 in ref. [4]).

The results of the comparison with the experimental moments are finally presented

in figures 7–10, where we investigate how the prediction yielded by our model fares with

respect to the moments of ALEPH D∗+ (figure 7), CLEO and BELLE D0 (figure 8),

D∗0 (figure 9) and D∗+ (figure 10) data. Since our model does not distinguish spin and

electric charge, we shall always have the same theoretical moments, regardless of the kind

of mesons we are comparing with. As found out in the x-space analysis, our predictions are

affected by fairly large uncertainties; it is nonetheless interesting that, within the errors,

the moments obtained using the resummed calculation provided with the effective-coupling

model are compatible with the experimental ones. This result is especially remarkable for

the comparison with the data collected at the Υ(4S) resonance (see figures 8–10), which

exhibited instead relevant discrepancies in x-space. In fact, considering, e.g., the x-space
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Figure 7: Moments of charmed-hadron cross section according to our effective-coupling model

(denoted by ‘Theory’), compared with the moments of D∗+ production at ALEPH. The theoretical

errors are estimated by varying the parameters entering in the perturbative calculation, as discussed

throughout the text.

Figure 8: As in figure 7, but comparing our prediction with the moments of the D0 production

cross section, measured by the BELLE and CLEO collaborations.

D0 spectra in figure 3, our model tends to underestimate the event fraction at small and

very large xD and overestimate the differential cross section for 0.6 <
∼ xD

<
∼ 0.8. Therefore,
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Figure 9: As in figures 7 and 8, with our results faring against the N -space D∗0 data from CLEO

and BELLE.

Figure 10: Comparison of our theoretical prediction with the N -space D∗+ data from CLEO and

BELLE. As in the x-space analysis, we plot separately the D∗+ moments at BELLE, according to

whether they decay via D∗+ → D0 or D∗+ → D+.

when evaluating integrated quantities like the moments, such effects get compensated and

one is able to obtain a reasonable description of all N -space data (figure 3). A similar result

was indeed found in [36], where parton showers and resummed calculations were used to
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describe B-hadron production at the Z0 pole. The spectrum yielded by the HERWIG

Monte Carlo generator [37] gave rise to a quite large χ2/dof when comparing with b-

fragmentation data in x-space, even after tuning a few parameters. However, HERWIG

was able to reproduce fairly well the first few experimental moments of the B cross section.

Referring, e.g., to the average value 〈xD〉 of the D0 spectra at B-factories, correspond-

ing to σN=2, the experimental data yield 〈xD〉 = 0.610 ± 0.005 (CLEO) and 0.612 ± 0.006

(BELLE). Using our default perturbative parametrization and effective-coupling model, we

obtain instead 〈xD〉th = 0.647, above the experimental result. Different choices of the pa-

rameters lead nevertheless to even larger or lower estimates of σN=2. For example, setting

mc = 2.1 GeV and the other parameters to their default values, we obtain 〈xD〉th = 0.686,

while for mc = 1.5 GeV the second moment reads 〈xD〉th = 0.599, below the CLEO and

BELLE data. In any case, as already pointed out for the purpose of the x-space analysis,

a complete NNLO/NNLL should possibly decrease the theoretical error in Mellin space as

well. Moreover, since even the best fits in x-space were obtained discarding the data points

at xD > 1−Λ/mc, we expect that the comparison with the experimental moments should

eventually get worse for very large values of N , dominated by the xD
>
∼ 0.85 region in x-

space, where our predictions are systematically below the experimental data. A hint for

such a behaviour can be learned from figures 9 and 10, where already the σN=10 theoretical

moment is only marginally consistent with the data, even within the uncertainties.

6. Conclusions

We studied charm-quark fragmentation in e+e− annihilation and used a recently pro-

posed model, based on an effective strong coupling constant, as the only source of non-

perturbative effects. Such a model was already employed in [3, 4] and gave a reasonable

description of b-quark fragmentation in e+e− annihilation and some B-meson decay data.

We described charm-quark perturbative production following the perturbative fragmen-

tation approach, with NLO coefficient function and initial condition of the perturbative

fragmentation function, NLL DGLAP non-singlet evolution and NNLL large-x resumma-

tion. Resummed expressions were matched to the exact NLO ones using the so-called

ln R-prescription, which turned out to significantly improve the spectrum near the x = 1

endpoint. The effective coupling was implemented in the NNLO approximation, as in

refs. [3, 4].

We compared the predictions of our model with data from ALEPH, BELLE and CLEO,

corrected for initial-state photon-radiation effects as in [30]. Throughout our analysis,

since our non-perturbative model has no tunable parameter, we varied the quantities in

the perturbative calculation within typical ranges, according to the values quoted in [34].

We found that our model is able to acceptably describe, for xD < 1−Λ/mc and within

the theoretical and experimental errors, the D∗+ spectrum from ALEPH. In particular, the

best fits to the data are obtained, within our chosen ranges, if we set the factorization scale

entering in the initial condition to µ0F = 2mc. A value of mc consistent with the charm pole

mass, rather than the D-meson mass, improves the comparison at small xD and around the

peak. Significant discrepancies were instead found with respect to the D0, D∗0 and D∗+
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data from B-factories, where we succeeded in obtaining χ2/dof ≃ 1 only when comparing

with the BELLE D∗0 spectrum, affected by pretty large errors. The experimental data on

D0 and D∗+ production at CLEO and BELLE and on D∗0 at CLEO exhibit instead very

small errors and we did not manage to obtain a reasonable χ2/dof, even within the theory

error. We just noticed that setting mc = 1.5 GeV gives a good description of the data for

xD < 0.6, but some major disagreement is still present for larger values of xD. In Mellin

space, however, within the fairly large theoretical uncertainties, we managed to reproduce

the first ten moments of all considered data samples. We expect nonetheless that for larger

values of N some discrepancy should appear, consistently with the observation that even

the best x-space fits were obtained discarding few large-xD data points.

Anyway, we remind that some problems with reproducing both ALEPH and B-factory

data were already encountered in ref. [30], where the authors employed a NLO/NLL calcu-

lation, a non-perturbative fragmentation function with three free parameters and rescaled

N according to eq. (4.5). The hadronization model was tuned to reproduce fairly well all

B-factory data on neutral as well as charged D- and D∗-meson production. Nevertheless,

the best-fit parametrization did not succeed in reproducing the ALEPH D∗+ spectrum

after evolving to LEP energies. The conclusion of the analysis carried out in [30] was

that, in order to reconcile both LEP and B-factory data, it was necessary to include power

corrections in the process-dependent coefficient function, depending on the process hard

scale. This way, one should be able to describe all data, still using the same perturbative

accuracy and the same functional form for the non-perturbative part. However, due to the

errors in the intermediated xD region, ref. [30] was not able to discriminate whether the

missing power corrections should behave according to a 1/Q or a 1/Q2 power law, with

Q being the centre-of mass energy. In any case, being mZ much larger than mΥ(4S), one

should expect that such a power correction should mainly modify the spectra at the Υ(4S)

resonance, in such a way that the fits of the non-perturbative fragmentation functions at

the Z0 pole, presented in [30], should eventually work even at B-factory energies, after

minimal adjustments [38].

As far as our work is concerned, we do find it interesting that, although within the

theoretical and experimental errors and after discarding few data points at very large xD,

our parameter-free model yields χ2/dof ≃ 1 from the comparison with ALEPH D∗+ data

and reproduces the moments of all analysed data sets. The discrepancies of our prediction

with respect to the very precise data from CLEO and BELLE in x-space clearly deserve

further investigation. The results in this paper, along with the ones reported in [4], seem

to indicate that the model works better for heavy-quark fragmentation at the Z0 pole,

while more serious problems show up once the hard scale is lowered. However, only a

power correction, such as the one understood in [30], mostly relevant at large x or N , may

not to be enough to solve the discrepancy with the B-factory data, as figures 3–5 show

disagreement even around the peak and at small xD.

The theoretical uncertainty is expected to decrease after the inclusion of NNLO coef-

ficient functions [12, 13], initial condition [14, 16] and non-singlet splitting functions [15],

which will also promote DGLAP evolution to NNLL accuracy in the non-singlet sector.

Since within our approach we are including power corrections in an effective coupling, any
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perturbative improvement, such as accounting for O(α̃2
S) contributions, will necessarily im-

ply the inclusion of non-perturbative corrections as well. Furthermore, the change (3.12) in

the coefficient A(3) has been implemented in the threshold NNLL expressions, but not yet

in the splitting functions, whose NNLO corrections do contain a contribution ∼ A(3) [15].

Including such a term in the splitting functions, along with the redefinition A(3) → Ã(3),

may shift the xD spectrum and possibly improve the comparison with the B-factory data,

as found in [4] for B-hadron production at LEP and SLD. We should also expect a relevant

impact on our analysis of the possible inclusion of large-x next-to-next-to-next-to-leading

logarithmic (NNNLL) terms, whose coefficients have been denoted by A(4), B(3) and D(3)

in eqs. (2.7) and (2.11). All such coefficients will be modified in a fashion analogous to

eq. (3.12) when using α̃S(k2). Moreover, the implementation of higher-order threshold

contributions in the exponents (2.7) and (2.11) will also lead to the inclusion of further

power corrections since, as part of our model, we performed the Mellin transforms exactly.

The other guideline to obtain better agreement with the x-space data consists in

modifying the effective-coupling model, e.g., introducing a correcting term δα̃S(k2) as in

eq. (3.14), possibly containing extra parameters. In order to accommodate both D and

D∗ data, δα̃S(k2) may possibly depend on the spin of the considered hadron. However,

before speculating about its functional form, we believe that we still need a NNLO/NNLL

calculation to reduce the theoretical uncertainty and deal with a more stable prediction. In

fact, without a NNLO/NNLL analysis, function δα̃S(k2) will largely depend on the values

chosen for the perturbative parameters and considerably vary according to whether, e.g.,

one sets mc = 1.5 or 2.1 GeV, µ0F = mc/2 or 2mc, and so on.

The large-xD behaviour of our spectra may be improved as well, since even the best

comparisons with the data were obtained in this paper for xD < 1 − Λ/mc and in [4] for

xB < 1 − Λ/mb. An option could be the prescription (4.5) suggested in [30]; in fact, any

modification at large xD will indirectly affect, via normalization, the energy distribution

at smaller xD as well. Nevertheless, once again, given the uncertainties exhibited by

our predictions even at large xD, this investigation should be better performed using a

calculation of higher accuracy.

Ideally, once the above issues are clarified, one may think of using our model to describe

D- and B-hadron production at the Tevatron accelerator, along the lines of refs. [39, 40],

and extend the results to LHC energies. Nevertheless, unlike the standard analyses, where

a non-perturbative fragmentation function is fitted to e+e− data and then used in the

hadron-collider environment, we are not tuning any parameter to the e+e− data. Therefore,

possible studies at hadron colliders will be independent checks of the capability of our model

to reproduce heavy-quark fragmentation data.

Moreover, we can use the NLO perturbative calculations in [41, 42], along with the

effective coupling constant, to predict bottomed-hadron spectra in top (t → bW ) or Higgs

(H → bb̄) decays at the Tevatron and LHC. Finally, the c-fragmentation results here pre-

sented can be compared with the ones yielded by Monte Carlo generators, extending the

analysis carried out in [36], where parton shower algorithms and resummations were com-

pared for the purpose of B-hadron production in e+e− annihilation, top and Higgs decays.

For such a comparison to be consistent, however, even the HERWIG [37] and PYTHIA [43]
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generators will have to be tuned to the same LEP and B-factory data analysed throughout

this paper. It will also be very interesting to implement the effective coupling constant

to replace, e.g., the cluster model [44] which simulates the hadronization in HERWIG and

investigate how the Monte Carlo results fare with respect to the experimental data on D-

and B-hadron production. This is in progress as well.
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